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Let Q be an open connected set in a finite-dimensional Euclidean

space, and let / be a function mapping fi into another finite-dimen-

sional Euclidean space. We define the set of curvilinear convergence of

ftohe

{^Gboundary of fl: there exists a simple arc 7 with one endpoint

at p such that 7— {p} Cfi and f(v) converges to a finite limit as

v—*p along 7}.

J. E. McMillan [6] has shown that if fi is an open disk in the plane

and if/ is continuous in 12, then the set of curvilinear convergence of

/ is of type Ps. In this paper we prove that there exists a bounded

continuous complex-valued function /, defined in the interior of a

three-dimensional cube, such that the set of curvilinear convergence

of/ is not a Borel set. Thus McMillan's theorem does not generalize

to three dimensions. However, the following question remains open.

Problem. Does there exist a continuous real-valued function f, defined

in the interior of a three-dimensional cube, such that the set of curvilinear

convergence of f is not a Borel set?

Let

R be the set of real numbers

/2" = w-dimensional Euclidean space

<2= |(x,y)G-R2:0<y^land -l^x^l]

K= \(x, y, z)ERz:0<y^l, -l^x=l,and -l^z^l}

Qf3 = interior of Q

K° = interior of K.

Let 12 again represent an open connected subset of Rn. If/: 12—>.R"'

is a function, we shall say that aERm is an asymptotic value oi f iff

there exists a continuous function v: [0,1)—>12 such that

dist(v(t), Rn — 12)—»0 and f(v(t))—>a as t—>1. (Note that a limit ap-

proached by / along a path which tends to » may or may not be an

asymptotic value by our definition.) We say that a is a point asymp-

totic value of/ (at p) iff v can be chosen so that, as t—>1, v(t) approaches
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a point pERn — fi- Because of the result of [8], the set of curvilinear

convergence of / is

{pERn — 0:/ has a point asymptotic value at p}.

Lemma. There exists a continuous complex-valued function s defined

in

{(x,y)ER2: y>0},

with | s(x, y) I ^ 1 for all x and y, such that s has the following property.

Let E be the set of all asymptotic values of s that are real and lie in the

interval ( —1, 1). Then E is equal to the set of all point asymptotic values

of s that are real and lie in ( —1, 1), and E is not a Borel set.

Proof. Let A be an analytic subset of R that is not a Borel

set. (This exists [7, p. 254].) We see from the paper of Kierst [4] that

there exists a holomorphic function h defined in jz: s is a complex

number and |z| <1{ such that h omits the three values —i,i, °o and

A\J { — i, i] is the set of all (finite) asymptotic values of h. The func-

tion h is then normal [5, p. 53], so, as pointed out by McMillan [6,

p. 311], it follows from Theorem 1 of [2] that A^J { — i, i} is just the

set of all (finite) point asymptotic values of h. We now obtain the

desired function by setting

h((l — y)eix)
s(x, y) =-p-—p        (0 < y < 1),

'y'      1+ \h((l-y)e")\ ^        y -

h(0)
s(x, y) =-i-r       (y — 1)-K ' y       1+| A(0) |

Remark. Since the theorem we want to prove has nothing to do

with meromorphic functions, it is unfortunate that the proof of the

lemma depends on the theory of meromorphic functions. This can be

avoided. The lemma can be proved by using [7, Theorem 113, p.

216], [l, Theorem 2, p. 179], and the methods of [3], but this in-

volves a messy construction, so we omit the details.

Theorem. There exists a bounded continuous complex-valued func-

tion f defined in K° such that the set of curvilinear convergence off is not

a Borel set.

Proof. Let 5 and E be as described in the lemma, and set g(x, y)

= s(x/y, y) for (x, y)EQ- The reader can verify that E equals the set

of all real point asymptotic values of g at the point (0, 0) which lie in

the interval ( — 1, 1). For each /G(0, l], define
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do(t) = sup{5 G (0, 1]: ((x, y) E Q, (x', y') G Q, y = t, y' ^ t,

and I (x, y) - (x', y') \   < 8) implies | g(x, y) - g(x', y') |   = t},

d(t) = min{\do(%t),\t\.

By statement (C) of [3], there exists a continuous complex-valued

function k defined in Q, with | k(x, y) \ g2l/2 for all (x, y)EQ, such

that for each a£(0, l] and for each arc

7 C {(x, y): — 1 ^ x eg 1    and   0 < y = 0},

(diameter 7)^d(a) implies (diameter k(y))}z2.

Let / be the function with domain K° defined by f(x, y, z)

= (g(x> y) —z)k(x, y). We note that the following inequality holds for

any three points (x, y, z), (x', y', z'), (x", y", z") in K°:

\f(x',y',z')-f(x",y",z")\

=  I (g(x', y') ~ z')k(x', V) - (g(x, y) - z)k(x', y')

+ (g(x, y) - z)k&, y') - (g(x, y) - z)k(x", y")

+ (g(x,y) - z)k(x",y") - (g(x",y") - z")k(x",y") |

^ \g(x,y)-z\\k(x',y')-k(x",y")\

(1) -  I k(x', y') I \g(x', y') -z'- g(x, y) + z\

- I Kx", y") I I g(x, y)-z- g(x", y") + z" I

^  \g(x,y)-z\\k(x',y')~k(x",y")\

- 2 I g(x',y ') - g(x, y)\   - 2 | g(x, y) - g(x", y") |

- 2 I z - z' I   - 2 I z" - z I .

Let L = {(0, 0, z): — Kz < 1}, and let F he the set of curvilinear

convergence of/. We wish to show that TP\L= {(0, 0, z):zEE}.

Suppose bEE- Then there is an arc 7 with one endpoint at (0, 0) such

that 7— {(0, 0)}QQp and g approaches b along 7. Let

7' = {(x, y, b): (x, y) Ey}.

Then g(x, y)— z—>0 as (x, y, z)—>(0, 0, b) along 7'. Thus, since k is

bounded,/(x, y, z)->0 along 7', so (0, 0, J)emL.
Now let us assume, conversely, that (0, 0, &)GrP\P and deduce

that bEE- Let 7' be an arc with one endpoint at (0, 0, b) such that

7' — {(0, 0, b)} C.K° and / approaches a limit along 7'. Let

7 = {(x, y) E R*- (x, y, z) E y' for some z}.

Then 7 is a (not necessarily simple) arc with one endpoint at (0, 0)

and 7 — {(0, 0)} QC*. I assert that g(x, y) —z approaches 0 along 7'.
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Assume this is false. Then there exists e> 0 and there exists a sequence

of points {(x„, y„, z„)}„=x in y' — {(0, 0, b)} such that

(xn, yn, Zn) —* (0, 0, b)        as n —* oo

and | g(xn, yn) —z„\ 2:e for all w. Let o>0 be chosen so that whenever

(u, v, w)Ej', (x, y, z)Ey', and v, y^b, then \w — z\ <\e. Let N he

chosen so that w2:N implies y„<min {3e/32, 35/4, 3/4}.

For the present, let w be a fixed integer greater than N. Set a

= 4y„/3. There exists an arc 7* contained in

7 C\ {(*, y)ER2:  I (*, y) - (x„, yn) |   ^ d(a)}

joining (x„, y„) to a point on the circle of radius d(a) about (x„, yn).

Clearly (diameter 7*) 2:d(a), so (diameter £(7*)) 2:2. Choose points

(*»'. y-/), (xi', y») in 7* with \k(x„ , yn)-k(x'n', y'„')\ 2:2. Choose

z„', z„' so that (x„', y„', z„') and (x'n, y„', z„') are in 7'. It is easy to

check that §a^y„' <8 and |a^y„'<5, so

(2) I zn — z^ I   < §e    and     | z„" — z„ |   < |e.

Moreover, since | (x„', y„') —(x„, y„)| ^d(a) g^do^a), we have

I g(xn, yn) - g(xn , y» ) I   ^ Ja < |e;

and similarly

I g(Xn',yn')  - g(Xn, Vn) \    < fc-

Combining these inequalities with (1) and (2), we get

|/(xn',yn',zn')-/(x„",yn",zn")|  >

I g(xn, yn) - zn I I k(xn\yn) — *(x„",y„") | - e 2: 2e - e = e.

But y„', yn" g4yn/3, so (*„', y„', z„')-»(0, 0, b) and (x„", y„", zn")

—>(0, 0, 5) as w—>oo ; hence/cannot approach a limit along 7', which

is a contradiction. We conclude that g(x, y)—z—>0 as (x, y, z)

->(0, 0, Z>) along 7'.

It follows immediately that g(x, y)^6 along 7, so bEE. We have

now shown that

m L = {(0, 0, z):zG A}.

Thus rr\L is not a Borel set. Hence T is not a Borel set; for if it were,

then THL would also be a Borel set.
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